

HARVIST: A System for Agricultural and Weather Studies Using Advanced Statistical Methods

Kiri L. Wagstaff
Jet Propulsion Laboratory

Co-Is: Dominic Mazzoni (JPL) and Stephan Sain (Univ. of CO, Denver)

June 28, 2005

1

Outline

- Project overview
- Preliminary study: corn yield prediction (12 counties)
 - Key finding: integrating data from multiple sources increases prediction accuracy
- HARVIST demonstration
- Accomplishments
 - 1. Classifier method (SVM) efficiency improvements
 - 2. Integration of classification and clustering together
 - Example: only cluster regions known to contain vegetation
- Future plans

HARVIST Overview

Key Ideas of the Project

- Combine data from multiple, diverse sources:
 - Satellite imagery (LandSat, MODIS, MISR)
 - Weather stations (NCDC)
 - Historical crop yields (USDA)
 - Land cover types (USGS)
 - All at different spatial and temporal resolutions

- Optimize machine learning techniques for image data
 - Exploit spatial dependencies to improve efficiency
- Analyze connections between weather and agriculture
 - Learn relationships between variables from multiple different data sources
 - Our study: Predict crop yield for different weather conditions

MODIS: MODerate resolution Imaging Spectroradiometer;

MISR: Multi-angle Imaging SpectroRadiometer

Preliminary Study: Corn Yield Prediction JPL

- Goal: predict corn yield for 12 California counties
 - Train on data from 2002, 2003; predict for 2004
- Results:
 - Just remote sensing data (NDVI): 17.5% error rate
 - Just weather data (temperature and precipitation): 7.9%
 - Both: 7.0%

System Demo

Featured Accomplishments

- 1. Classifier method (SVM) efficiency improvements
- 2. Integration of classification and clustering together
 - Example: only cluster regions known to contain vegetation

(1) SVM Efficiency Improvements

- Support Vector Machines (SVMs)
 - Identify a hyperplane that maximally separates pixels from each labeled class
 - Pixels on the boundaries are the "support vectors" (SVs)

- Goal: reduce classification time (scales with number of SVs)
 - Reduced Set method: identify smaller set of SVs (~10x speedup, but pay pre-processing cost to find reduced set)
 - Nearest Support Vector method: adjust computation based on "difficulty" of item to be classified (~2x speedup)

(1) SVM Efficiency Improvements: Results JPL

- Hybrid: Nearest Support Vector + Reduced Set
- Tradeoff between accuracy and speed

(2) Integration of classification, clustering JPL

- Example: clustering pixels from a specific class (focus of attention)
 - User labels and classifies the image using an SVM,
 then identifies a specific class to be clustered
 - Enables further exploration of class structure
 - Motivation here: identifying meaningful sub-groups within a class where we can build specialized crop prediction models
 - Clustering also returns the "average" member of each cluster, to aid in interpretation of results

Work In Progress

Technology

- Increase SVM, clustering efficiency further
 - Methods that leverage spatial relationships in the data
- Conduct summer field study
 - Collect ground truth for different crop types in central California
 - Use this data to train a crop type classifier
 - Enables specialization of yield prediction by crop type
- Add kriging/interpolation methods for to compensate for missing data or cloudy pixels

Science

- Analyze time series data from Kansas (105 counties) to identify factors that impact high/low yield
- Integrate weather, soil properties data
 - Compare quality of predictions with and without these data sources

Long Term Goals and Benefits

- Produce a single, integrated, graphical system for classification, clustering, and prediction from multiple, heterogeneous data sources
- Demonstrate global scalability of enhanced SVM and clustering methods (optimized for image data)
- Demonstrate feasibility of system by predicting crop yield from remote sensing, weather, land cover, and soil type data bases